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“Prompts and what do they do?”
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The questions they are trying to answer are:

● Does irrelevant context harm the model performance? 
● If so, by how much? 
● And, how can one mitigate it?
● What is impacting the performance?
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This is really interesting… “Why do prompts work / not work?”
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Approach, 4 prompting techniques:

1. Chain-of-thought (CoT, Wei et. al. 2022)
2. Zero-shot Chain-of-thought (0-CoT, Kojima et. al. 2022)
3. Least-to-most prompting (LTM, Zhou et. al. 2022)
4. Prompting with programs (“PROGRAM”, PaLM Chowdhery et. al. 2022)

Have you heard / used all of the above? Do you know of 
other prompting techniques?
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Chain-of-thought:

Source: https://arxiv.org/pdf/2201.11903
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Zero-shot chain-of-thought:

Source: https://arxiv.org/pdf/2205.11916
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Least-to-most:

Source: https://arxiv.org/pdf/2205.10625
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Programs:

Source: https://www.semanticscholar.org/reader/a38e0f993e4805ba8a9beae4c275c91ffcec01df
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New Benchmark:
- GSM-IC (derived from GSM8K)

- Take 1000 from training set
- Take 100 as subset that at least one of the prompting techniques solves
- Add manually created & verified sentences that are “irrelevant” (i.e. do not affect the answer):

- Topic: On-topic / off-topic
- Number: same magnitude / different magnitude
- “Role” name overlap: Yes, Partial (e.g. A’s sister), No

- Total size: 58,052

Is this a good dataset? Would you keep it? Would you 
change anything?
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GSM-IC: Example
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Mitigation Strategies

1. Prompt example with irrelevant context
2. Clear Instruction to ignore irrelevant context
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All techniques:

Source: https://www.semanticscholar.org/reader/a38e0f993e4805ba8a9beae4c275c91ffcec01df
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Interesting insights - Part 1:

● Longer-prompts more susceptible 
to irrelevant context
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Interesting insights - Part 2:

● A single instruction is super 
useful:
a. “Feel free to ignore irrelevant context”
b. (or similarly: “let’s think step by step”)
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Interesting insights - Part 3:

● Performance does not drop on 
original dataset:
a. I.e. prompts that show irrelevant 

context can improve accuracy and 
robustness
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Interesting insights - Part 4:

● Different effects of overlap
a. in-topic hardest
b. role-overlap & num-range not so 

important
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Conclusion:

1. Irrelevant context harms the model performance significantly! (It does not actually 
“understand” what’s going on)

2. Small instructions such as “feel free to ignore irrelevant context” can have big 
effects

3. Adding relevant examples (with irrelevant context) helps performance.
4. LTM is best performing prompting technique
5. Self-consistency can be very helpful too. 
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The question the author’s try to answer:

1. Are explanations in CoT faithful?
2. What can we say about faithfulness in CoT?
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Datasets used:

1. BIG-Bench Hard (BBH)
2. Bias Benchmark for QA (BBQ)
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Bias type for BBH:

1. Reorder prompts so correct answer (in the 
few-shot examples) is always A.

2. Suggest correct answer in prompt.
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Bias type for BBQ:

1. Social stereotypes
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Main Findings:
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Results:

- Do they make sense?
- Are they clear?
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Result Examples:

- Explanations 
bias towards 
wrong answer
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Conclusion:

1. Adding biases to model input -> leads the model to follow biases without 
acknowledging them
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1. Irrelevant context can be harmful
a. “relevant irrelevant examples” can help
b. small prompt hints can help

2. Models do not always explain things “faithfully”
a. Adding biases to model input -> leads the model to follow biases without acknowledging them
b.

=> Interesting question: 
- Is there a contradiction? 
- irrelevant context [harmful] vs. unfaithful (irrelevant) explanations (context) [useful] 
- Answer: Hopefully -> Our next research project 
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