IMPERIAL

NLP Reading Group

“Fantastic Prompts and where to find them”

March 5th 2024

Fantastic Prompts and where to find them

IMPERIAL

Overview:

1. History of the prompt

2. The Power of Scale for Parameter-Efficient Prompt Tuning
(“Soft-prompts”)

3. Towards a Unified View of Parameter-Efficient Transfer Learning

4. Black-Box Tuning for Language-Model-as-a-Service

IMPERIAL

Background & (brief and recent history) - Part 1 - Classical Approaches

1. We “started*” with static word-embeddings (e.g. word2vec, glove, fasttext) + Custom Model (e.g. FFN,
BiLSTM + CRF) (2013)

a. Model Improvement happened via: “Full Training for each individual task”

2. We then had contextualised word-embeddings (e.g. ELMO, BERT) + Specialised Layers for different
tasks. (2017)

a. Model Improvement happened via: “Fine-tuning the full model for each individual task”

3. We then went into the area of multi-task training (e.g. The natural language decathlon) (2018)
a. Model Improvement happened via: “Fine-tuning the full model for all tasks at the same time”

4. We then went into era of efficient model adaptations (e.g. Adapter Layers) - aka “Transfer Learning” (2019)
a. Model Improvement happened via: “Fine-tuning specific layers (for all tasks at the same time)”

since ~2013 IMPERIAL

Background & (brief and recent history) - Part 2 - The journey to Prompts

5. The “extension of Multi-task learning” entering the era of natural language based tasks definitions (e.g. T5) (2019)
a. The idea was to use text input (i.e. natural language context) to provide the task context for the model.
b. “The Birth of the Prompt” (but very few people did new tasks with these models)

6. Atthe same time we got very powerful “contextual word embeddings” and large language models. (e.g. GPT-3) (2020)
a. Now prompt-engineering was properly born (however, it was completely unstructured), as the model would not follow commands, but complete the text.
b. E.g. The prompt: Please give me a layout of a reading-group presentation. Would could give: “Please give me a layout of a coursework presentation”

7. We then went into “massive multi-task fine-tuning” (using text based tasks), (e.g. Flan 2021), which then followed with the
full “InstructGPT” (2022).

a. The idea was to now push the “limit” of multi-task training with text-based context.
b. Now the current prompt engineering was born. You can now use these models for specific tasks and “tune the prompt” to solve existing or new tasks.

8. Finally we went into the era of ChatGPT style models, by continuing to fine-tune instruct models using additional

“alignment” (aka fine-tuning) with Human Feedback (either via RL or direct optimisation).
a. Now the models exceed the instruction dataset and responses are even better from a human perspective.

IMPERIAL

The Power of Scale for Parameter-Efficient
Prompt Tuning

IMPERIAL

The Power of Scale for Parameter-Efficient Prompt Tuning

Motivation:
1. We are spending hours prompt engineering

2. Generally there are so many guides to prompt-engineering.
a. Chain-of-Thought
b. Chain-of-Code
C. Structured output (e.g. JSON)

3. Various approaches proposed for auto-prompt generation (e.g. AutoPrompt [clever template based])

4. Also, fine-tuning is very expensive and serving multiple models with different weights can be infeasible.

IMPERIAL

The Power of Scale for Parameter-Efficient Prompt Tuning

Key Idea: “Soft-prompts”

Tune prompt-vectors (aka Soft-prompts) using gradients (while keeping the
rest of the model fixed).

IMPERIAL

The Power of Scale for Parameter-Efficient Prompt Tuning

LLM output [Y1, ...,YT] given N prompt tokens and M input tokens.

P 1

PN

X1

XM

Model

Y1

YT

IMPERIAL

The Power of Scale for Parameter-Efficient Prompt Tuning

A fixed number of Soft-prompt “tokens” are tuned using gradient descent.

P1 P N X1 XM
~
/ Model
Fix the number N and
update [P1,...,PN] using
gradient based algorithms Y 1 VT

(and a classical
log-likelihood objective).

IMPERIAL

The Power of Scale for Parameter-Efficient Prompt Tuning

Key Results:

—e— Model Tuning ~m#- Prompt Design
~@- Model Tuning (Multi-task) == Prompt Tuning

As the model size increases prompt-tuning
“closes the gap” with fine-tuning, while
hand-crafted prompts (albeit with GPT-3)
underperforms any fine-tuning. e

NN
N\
A
v\

\
N

108 10° 1010 101
Model Parameters

Figure 1: Standard model tuning of TS achieves strong
performance, but requires storing separate copies of the
model for each end task. Our prompt tuning of TS5
matches the quality of model tuning as size increases,
while enabling the reuse of a single frozen model for
all tasks. Our approach significantly outperforms few-
shot prompt design using GPT-3. We show mean and
standard deviation across 3 runs for tuning methods.

IMPERIAL

The Power of Scale for Parameter-Efficient Prompt Tuning

Important Technical Considerations:

1.

A

Initialisation (random, random
token embeddings, output
classes, ...)

Length of Prompt

Training Steps [they do 30K,
LR=0.3, Batchsize=32,
Adafactor(1e-5,0.8)]

[In their case] LM-adaptation of
T5.

SuperGLUE Score

SuperGLUE Score

10°
Model Parameters

(a) Prompt length

Model Parameters

(c) Pre-training method

SuperGLUE Score

SuperGLU E Score

=/
0 . / -\
60 §/f“’
50 \./

10°
Model Parameters

(b) Prompt initialization
00
90
8o —— 00
60 /0
/

MdIP arameters

(d) LM adaptation steps

IMPERIAL

The Power of Scale for Parameter-Efficient Prompt Tuning

Additional nice thing:

Dataset Domain | Model Prompt A

SQUAD Wiki | 949402 948+0.1 —0.1

TextbookQA Book 543437 668429 +12.5

: BioAS Bio 779 £04 791403 +1.2

1. Seems to generalise better to RACEQ Exam | 598406 60.7405 +0.9
: . RE Wiki 884401 888402 +04

out-of-domain (but similar tasks) DuoRC Movie | 689407 677411 —12
DROP Wiki 689+17 67.1+19 —18

compared to model fine-tuning
Table 1: F1 mean and stddev for models trained on
SQuAD and evaluated on out-of-domain datasets from
the MRQA 2019 shared task. Prompt tuning tends to
give stronger zero-shot performance than model tun-
ing, especially on datasets with large domain shifts like
TextbookQA.

IMPERIAL

The Power of Scale for Parameter-Efficient Prompt Tuning

Conclusion:

1. Very easy and effective method.

2. Reaches Model Fine-Tuning performance.

3. More robust when out-of-domain data!

IMPERIAL

Towards a Unified View of
Parameter-Efficient Transfer Learning

IMPERIAL

Towards a Unified View of Parameter-Efficient Transfer Learning

Key Idea: Unifying various approaches:

1. Prefix tuning
2. Adapters
3. Lora into a single framework.

IMPERIAL

Towards a Unified View of Parameter-Efficient Transfer Learning

hOOOO

PLM module

leOOOl—/

hOO OO

PLM module

i &
EZoXoXoYo] Mg

hooo;?t7

PLM module Re'—”

Wi own)

leOOOl—/

Scahng
m
PLM module /\l_elLl\/
T Wiiom

OO OO0l —

i
(xO O O O]

(a) Adapter (b) Prefix Tuning (c) LoRA (d) Parallel Adapter (e) Scaled PA

Figure 3: Graphical illustration of existing methods and the proposed variants. “PLM module” represents a
certain sublayer of the PLM (e.g. attention or FFN) that is frozen. “Scaled PA” denotes scaled parallel adapter.
We do not include multi-head parallel adapter here to save space.

IMPERIAL

Towards a Unified View of Parameter-Efficient Transfer Learning

Table 1: Parameter-efficient tuning methods decomposed along the defined design dimensions. Here, for clarity,
we directly write the adapter nonlinear function as ReLU which is commonly used. The bottom part of the table
exemplifies new variants by transferring design choices of existing approaches.

Method Ah functional form insertion form modified representation composition function
Existing Methods

Prefix Tuning softmax(zW, P,)P, parallel head attn h+ (1-Ah+)\Ah

Adapter ReLU(hWown) Wp sequential ffn/attn h+ h+ Ah

LoRA TWown Wep parallel attn key/val h+ h+s-Ah
Proposed Variants

Parallel adapter ReLU(hWown) W parallel ffn/attn h < h+ Ah

Muti-head parallel adapter ~ ReLU(hWaown) Wp parallel head attn h +— h+ Ah

Scaled parallel adapter ReLU(hWown) Wp parallel ffn/attn h+ h+s-Ah

IMPERIAL

Towards a Unified View of Parameter-Efficient Transfer Learning

Results of previous approaches:

37
(%)

5+
Rt

B
(=)
L

MT BLEU

—8— LoRA
301 =% Adapter
—— PrefixTuning
- BitFit
26-‘ ===-Full Fine-tuning

XSum ROUGE-2
s

- Missing (soft-prompt approach)

—
oo
A

0 5 10 15 0 5 10 15
Fine-tuned Parameters (%) Fine-tuned Parameters (%)

Figure 4: Performance of previous state-of-the-art parameter-
efficient tuning methods on XSum (left) and en-ro (right).

IMPERIAL

Towards a Unified View of Parameter-Efficient Transfer Learning

Insightful Results:

21.25

37.0

2

-
-
-
-
Py sl
-
gt

Adapting FFN layers is more i sty 8

,’/’) B @~ Prefix (attn)

. . d i - 36.0 ¥ PA (attn)
powerful than adapting the attention nsol] 74 " < e
n B LoRA (ffn)

20.25 = . ‘ " y 35.0+= r r r ‘
Iayers' 2.5 5.0 7.5 100 125 ’ 25 5.0 75 100 125

Fine-tuned Parameters (%) Fine-tuned Parameters (%)

XSum ROUGE
s
=

Figure 5: Results on XSum (left) and en-ro (right). PA represents parallel adapter. Blue and red markers apply
modifications at attention and FFN sub-layers respectively (best viewed in color).

IMPERIAL

Towards a Unified View of Parameter-Efficient Transfer Learning

Conclusion:

1. Various approaches are related.

2. Parallel Adapters are proposed (Question: outperform
prompt-tuning?)

3. FFNs is a better place to fine-tune than attention heads.

IMPERIAL

Black-Box Tuning for
Language-Model-as-a-Service

IMPERIAL

Black-Box Tuning for Language-Model-as-a-Service

Key Idea: “Black-box tuning of prompts”

1. Use Derivative Free Optimisation (DFQO) to find good prompts

2. Use intrinsically low “task dimensionality” of LLMs to do that (as otherwise it is
infeasible).

IMPERIAL

Black-Box Tuning for Language-Model-as-a-Service

Various Derivative Free Optimisers:

1. “Gradient Descent Approximation” (sample around x_t and see if the new
direction x_t+1 was better)

2. Evolutionary Methods (similar method, sampling and population are different)

IMPERIAL

Black-Box Tuning for Language-Model-as-a-Service

» [N

1 \\ Pre-Trained Language Model Inference R

\ (Black-Box API) .

po \ :

1 .

D \ t :

e I:[:I:] \\ Best film ever . It was <MASK> . -

L

A € RDX4 Copy™ A totally boring movie ! It was <MASK> . :

You 'll probably love it . It was <MASK> . :

Server A A .
—————— o Sl i <. S

L]

User - Labeled Data . :

II' great Best film ever . It was <MASK> . E

Y| terrible | X|A totally boring movie ! It was <MASK> . :

] great You '1ll probably love it . It was <MASK> . =

} L

1 good:10.2 great:7.9 movie:7.1 .. E

{(:)} LY, 7 ¢ |terrible:11.2 bad:9.9 boring:8.9 .. ("

great:9.8 love:5.2 film:3.3 ..

Derivative-Free Optimizer

Figure 2. A single iteration of the optimization. Given z € R provided by the derivative-free optimizer, we project it to the prompt
space by a random matrix A € R”*?. By adding the projected prompt embeddings Az with some initial prompt embeddings po (in this
illustration are the embeddings of tokens randomly sampled from the PTM’s vocabulary), we obtain the final prompt embeddings that are
then concatenated with the input texts X. By calling the black-box API f, which implements the forward computation of the PTM, the
predictions on the masked positions are obtained, i.e., Y= f(p; X). With the prediction Y and the golden labels Y at hand, we can
calculate the loss that is used by the derivative-free optimizer to suggest a new z.

IMPERIAL

Black-Box Tuning for Language-Model-as-a-Service

Table 3. Overall comparison on various language understanding tasks. We report mean and standard deviation of performance over 3
different splits (§ 4.1). All of the results are obtained with pre-trained ROBERTay argg in 16-shot (per class) setting.

SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE

Method acc acc acc acc F1 acc acc Avg.
Gradient-Based Methods
Prompt Tuning 68.23 +3.78 61.02 +6.65 84.81 +0.66 87.75 +£1.48 51.61 +8.67 36.13 +£1.51 54.69 +3.79 63.46
+ Pre-trained prompt / / / / 7748 +£4.85 64.55+243 77.13 £0.83 74.42
P-Tuning v2 64.33 £3.05 92.63 +£1.39 83.46 £1.01 97.05 +041 68.14 +£3.89 36.89 +0.79 50.78 +2.28 70.47
Model Tuning 85.39 +2.84 91.82 +0.79 86.36 £1.85 97.98 +0.14 77.35 +5.70 54.64 +5.29 58.60 +6.21 78.88
Gradient-Free Methods
Manual Prompt 79.82 89.65 76.96 41.33 67.40 31.11 51.62 62.56
In-Context Learning 79.79 £3.06 85.38 +3.92 62.21 +13.46 34.83 +£7.59 45.81 +6.67 47.11 £0.63 60.36 +1.56 59.36
Feature-MLP 64.80 +£1.78 79.20 £2.26 70.77 £0.67 87.78 £0.61 68.40 +0.86 42.01 £0.33 53.43 +1.57 66.63
Feature-BiLSTM 65.95 +£0.99 74.68 +£0.10 77.28 +2.83 90.37 £3.10 71.55+7.10 46.02 £0.38 52.17 £0.25 68.29
Black-Box Tuning 89.56 +0.25 91.50 +£0.16 81.51 £0.79 87.80 +1.53 61.56 +4.34 46.58 +1.33 52.59 +2.21 73.01
+ Pre-trained prompt / / / / 75.51 £5.54 83.83 £0.21 77.62 £1.30 83.90

IMPERIAL

Black-Box Tuning for Language-Model-as-a-Service

Conclusion:

1. Blackbox approach can be more powerful than manual prompts.

2. Works with APl based methods.

IMPERIAL

Takeaways & Other ideas

IMPERIAL

Takeaways & Other Ideas

1. “Demystifying Prompts via Perplexity”
a. Really interesting idea where they are able to predict whether a specific prompt behaves well by calculating the perplexity
of a prompt. If a prompt has low perplexity (i.e. is well understood by the model) then the performance is often good on
this task.

2. “Attempt”’ Paper learns “soft-prompts” for different tasks and then combines them as an attention
layer into the final “soft-prompt” given a specific task.

3. Soft-Prompts can be very powerful (if one has access to the model)
a. Better/ Faster / Easier than manual prompt-engineering?

4. Black-box Tuning (and follow-on ideas) might be very powerful for APl based models? [An area to
investigate?]
a. Does it work in practice for our tasks?

IMPERIAL

Bibliography

- Word2vec: https://arxiv.org/abs/1301.3781

- BILSTM-CREF https://arxiv.org/abs/1508.01991

- ELMO https://arxiv.org/abs/1802.05365

- Decathlon https://arxiv.org/pdf/1806.08730.pdf

- T5 https://arxiv.org/pdf/1910.10683.pdf

- GPT3 https://arxiv.org/abs/2005.14165

- Flan https://arxiv.org/pdf/2109.01652.pdf

- InstructGPT https://arxiv.org/abs/2203.02155

- The Power of Scale for Parameter-Efficient Prompt Tuning https://arxiv.org/abs/2104.08691

- Towards a Unified View of Parameter-Efficient Transfer Learning https://arxiv.org/abs/2110.04366

- Black-Box Tuning for Language-Model-as-a-Service
https://www.semanticscholar.org/reader/002c58077a1f1b296468b117230a1199e91f35¢c2

- Demystifying Prompts in Language Models via Perplexity Estimation https://aclanthology.org/2023.findings-emnlp.679.pdf

- AUTOPROMPT: Eliciting Knowledge from Language Models with Automatically Generated Prompts
https://arxiv.org/pdf/2010.15980.pdf

- ATTEMPT: Parameter-Efficient Multi-task Tuning via Attentional Mixtures of Soft Prompts
https://www.semanticscholar.org/reader/55a250868627de2d202d06e7cb3f6cbcd3a66f88

IMPERIAL

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1802.05365
https://arxiv.org/pdf/1806.08730.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/pdf/2109.01652.pdf
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2110.04366
https://www.semanticscholar.org/reader/002c58077a1f1b296468b117230a1199e91f35c2
https://aclanthology.org/2023.findings-emnlp.679.pdf
https://arxiv.org/pdf/2010.15980.pdf
https://www.semanticscholar.org/reader/55a250868627de2d202d06e7cb3f6cbcd3a66f88

