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Test Time Computation Quick overview

Question: Given a fixed model & given a fixed test time example

How can we improve performance?

Scale Computation (without external feedback)

- Tree-of-thought

- ADaPT \

Today

Scale Computation (with external feedback)

- Reflexion
- LATS
- (AdaPlanner)
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Test Time Computation Quick overview

Test Input Answer

Chain-of-thought
Self-consistency

Trees of thoughts \

Self-reflection
(+ label)
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Test Time Computation Quick overview

Reasoning Module

(“base agent”)
(Planner + Executor)

Exploration Module /
Action-Reasoning

Proposal Self-verification /
Self-reflection
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Tree of Thoughts: Deliberate Problem Solving
with Large Language Models
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Tree of Thoughts: Deliberate Problem Solving with Large
Language Models
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(d) Tree of Thoughts (ToT)
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Tree of Thoughts: Deliberate Problem Solving with Large
Language Models

Three main components:
1.  Reasoning Steps (“thoughts”)
2. Reasoning proposers
3. Reasoning evaluators
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Tree of Thoughts: Deliberate Problem Solving with Large
Language Models

1. Reasoning

Standard Prompting Chain-of-Thought Prompting
- Model Input ) g A Model Input ) —
( . ( =S \
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of |
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
\ do they have?
N |\ J
\_ B4
8 it =3

| Model Output | ~ 5
I A: The answer is 27. x | A: The cafeteria had 23 apples originally. They used |

/| 20 to make lunch. So they had 23 - 20 = 3. They
| bought 6 more apples, so they have 3 + 6 = 9. The
| answeris 9. )

“Classical Chain-of-thought”
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Tree of Thoughts: Deliberate Problem Solving with Large
Language Models

2. Reasoning Proposer

2. Thought generator G(py, s, k). Given a tree state s = [z, 2;...;], we consider two strategies to
generate k candidates for the next thought step:

(a) Sample i.i.d.thoughts from a CoT prompt (Creative Writing, Figure 4): 2(9) ~
p§°T (ziy1]s) = p§°T (zi41|z, 21..5) (j = 1---k). This works better when the thought
space is rich (e.g. each thought is a paragraph), and i.i.d. samples lead to diversity;

(b) Propose thoughts sequentially using a “propose prompt” (Game of 24, Figure 2; Crosswords,
Figure 6): [z(D),... 2(F)] ~ pﬁ”’”o“(zz(ii'k) | s). This works better when the thought
space is more constrained (e.g. each thought is just a word or a line), so proposing different
thoughts in the same context avoids duplication.
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Tree of Thoughts: Deliberate Problem Solving with Large
Language Models

3. Reasoning Evaluator

3. State evaluator V(py, S). Given a frontier of different states, the state evaluator evaluates the
progress they make towards solving the problem, serving as a heuristic for the search algorithm
to determine which states to keep exploring and in which order. While heuristics are a standard

(a)

(b)

Value each state independently: V(pg,S)(s) ~ py“¢(v|s) Vs € S, where a value
prompt reasons about the state s to generate a scalar value v (e.g. 1-10) or a classifica-
tion (e.g. sure/likely/impossible) that could be heuristically turned into a value. The basis
of such evaluative reasoning can vary across problems and thought steps. In this work, we
explore evaluation via few lookahead simulations (e.g. quickly confirm that 5, 5, 14 can
reach 24 via 5 + 5 + 14, or “hot_1” can mean “inn” via filling “e” in “_”) plus commonsense
(e.g.1 2 3 are too small to reach 24, or no word can start with “tzxc”). While the former
might promote “good” states, the latter could help eliminate “bad” states. Such valuations

do not need to be perfect, and only need to be approximately helpful for decision making.

Vote across states: V(pg, S)(s) = 1[s = s*|, where a “good” state s* ~ pj°t¢(s*|S) is
voted out based on deliberately comparing different states in S in a vote prompt. When
problem success is harder to directly value (e.g. passage coherency), it is natural to to instead
compare different partial solutions and vote for the most promising one. This is similar
in spirit to a “step-wise” self-consistency strategy, i.e. cast “which state to explore” as a
multi-choice QA, and use LM samples to vote for it.
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Tree of Thoughts: Deliberate Problem Solving with Large

Language Models

Example:

Input: 491013

4+9=13 |

(a) Propose Prompt

-

A

Input 491013
Possible next steps:

(b) Value Prompt

Evaluate if given numbers can
reach 24 (sure/likely/impossible)
1014:10 + 14 = 24. sure

101313

|
—(LM —
\ J

Thought Generation

4+9=13(lefc 10 13 13)
10-4=6(left:6913)

Thought Evaluation
L

(13-10)*13=3*13=39
10 + 13 + 13 =36 There is no way
to obtain 24 with these big
numbers. impossible
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Tree of Thoughts: Deliberate Problem Solving with Large
Language Models

Results
GSMSK StrategyQA GPT4 GPT-3.5 GPT4 GPT-35
10 2l 73 I0 7.3% 6% 10 6.19 4.47
CoT 86 82 CoT 4.0% 3% CoT 6.93 5.16
ToT 90 83 ToT 74% 19% ToT 17.56 6.62
Table 4: New tasks with Table 5: Game of 24 with Table 6: Creative Writing with
zero-shot ToT and GPT-4. GPT-4 vs GPT-3.5. GPT-4 vs. GPT-3.5.
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Tree of Thoughts: Deliberate Problem Solving with Large
Language Models

Cost & Efficiency

Running ToT requires significantly more computations than IO or CoT prompting. For example, in
Game of 24 (Table 7 below), solving a problem with ToT requires 5.5k completion tokens, close to
100 CoT trials (6.7k tokens). But the performance of ToT is better than best of 100 independent CoT

trials.
Game of 24 Generate/Prompt tokens Cost per case Success
IO (best of 100) 1.8k / 1.0k $0.13 33%
CoT (best of 100) 6.7k / 2.2k $0.47 49%
ToT 5.5k / 1.4k $0.74 74%

Table 7: Cost analysis on Game of 24.
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Tree of Thoughts: Deliberate Problem Solving with Large
Language Models

Conclusion:
1. Effective method of scaling test time computation to improve score
2. Some tasks are affected less (GSM [saturation] & Creative Writing [not a ‘logical’ task?])

3. Would be interesting to have proper cost analysis of computation
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ADaPT: As-Needed Decomposition and
Planning with Language Models
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ADaPT: As-Needed Decomposition and Planning with Language
Models
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ADaPT: As-Needed Decomposition and Planning with Language

Models

Task: Put a clean mug on desk.
Iterative Executor (ReAct) Plan-and-Execute

7

Plan:

> Go to countertop 1.

Step 1: Find and Execute:
You reached loc 1... take the mug AND Step 1
> Go to cabinet 12. Step 2: Clean the | | Execute: |;
You reached loc 20 ... | |Mug AND E Step 2 E
i 5 :, Execute: |1
> Think: Mug not found. PISpSIEC D ' Step3 )i

Task failed!

Not Executed
ADaPT (Recursive Decomposition, As-needed)

Execute: Task ADaPT (Task)

Plan:

Step 1: Find and take the mug anp
Step 2: Clean the mug anp

Step 3: Put the clean mug on desk

On execution failure,

Execute: Step
decompose further

ADaPT (Stepl)

Plan:
Step 1a: Find and take the mug from countertops or
Stgp 1b: Find and take the mug from cabinets or

Execute: Step 1a]" o

4
Execute: Step 1b] '\ syccessful sub-task allows
Exeoute: Step ( 777777777 i execution to resume
Execute: Step
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ADaPT: As-Needed Decomposition and Planning with Language

Models

Algorithm 1 Algorithm for ADAPT

1: functlon ADAPT(Task T, Current depth k)
2

Task: Pt:t a clean mug on desk

3: U VOO ;o : setmctmemeceos s smecriceses < HER S,
o o2 0 S o= ) N4 — \I
ps /" @5 Executor (Ceanthemig)) " ] prannes ([ T2 )
: ' ! ' g on desl !
¢ ! Planner (Task) ‘ : = :
6: : [LIM] Think: Input assumption: | am carrying a : Step 1 —>ADaPT (Stepl, k+1)~ 7| ¢ 1
. 1| mug. Now | need to verify this. ' i !
7: an only when the executor fails. ' OK 1 True Step 2 >ADaPT (Step2, k+1) -« | :
8: 1f l ted is F lse then +| tzza> inventory ; i ]
9. CopecLe 'a e ‘ You are carrying: a mug 1 ! return (7 Step 3|—>ADarT (Step3, k+1) -l 1 | , p :
’ 1| (LIM1> go to sinkbasin 1 0 [ e e e " | Step 1: Find and e mug AND 3
! You reached loc 13, you see ' s # Think: Now I found a mug, I will clean it 3
1 ' : [LIM] > clean mug 1 with sinkbasin 1 : = ;[;? return ) , | Step 2: Clean the mug with smkbasm AND |,
10: Py logic b plannerLLM (T) ! A You clean mug 1 : Controller S ) g ,' 5 ,:{;:;;C?::’dfesn mug, I will put ]
11: // Get the outputs for individual sub tasks T [lCESicieanediiiS iy JEsk e iondl reme | | Step 3: Put clean mug on desk ;
12: O = {ADAPT (Tiup, k+1)|Toun € P} T \ SN ’
13: // Combine the outputs of the sub tasks ADaPT (Task, k)
14: completed « logic(O)
15: | return completed Figure 2: Block diagram of the ADAPT pipeline with an example from ALFWorld. Left: Use of LLM as an

executor to interact iteratively with the environment along with an example execution trajectory. Middle: Overall
recursive algorithm (depth £ < d,,ax) that embeds the executor and planner, refer to Algorithm 1 for details. Right:
Outline of using LLM as a planner to generate sub-tasks (steps) and logical operators combining them.

Key Components:
1. LLM Planner
2. LLM Executor
3. LLM Verifier
4 Overall Controller
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ADaPT: As-Needed Decomposition and Planning with Language

Models

1. Planner

Composition Logic for Sub-tasks. Along with
the sub-tasks, we prompt the planner to generate
logical operators to combine various sub-tasks in
the plan to accomplish the task. We allow for two
logical operators: “AND” and “OR”. Sub-tasks
are linked using AND when they must be executed
sequentially for the task to succeed. However, in
cases requiring exploration, such as finding an item
in an unknown room, we employ the OR operator
to simulate conditional checks. Here, the task suc-
ceeds if any of the sub-tasks are successful. For

Adaptive Multi-level Plans in ADaPT

Plan: Put a clean mug on desk

# Think: To do this task, ....

Step 1: Find and take the mug anp

# Think: Now that | have found it, ....

Step 2: Clean the mug using sinkbasin AND
# Think: Now that | have cleaned ....

Step 3: Put clean mug on desk

Plan: Find and take the mug

# Think: To do this task, ....

Step 1: Find and take mug from countertop or
# Think: If | do not find the mug, ...

Step 2: Find and take mug from cabinet or

# Think: If | do not find the mug, ....

Step 3: Find and take mug from drawer
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ADaPT: As-Needed Decomposition and Planning with Language
Models

- -~

Executor ( Clean the mug ) :
/ Ly

[LIM] Think: Input assumption: | am carrying a
mug. Now | need to verify this.
OK.

!
2. Executor :
]
]
]
;
: [LIM] > inventory
i
]
]
]
1
]
I
i
|

3.1 LLM as an Executor

Overview. In a given environment, the executor
is provided with a concise natural language task
specification, as shown in Fig. 2 (left). Following
Yao et al. (2023b), the executor iteratively interacts
with the environment via actions generated by the
LLM. This interaction continues until the task is You clean mug 1

either completed or a preset maximum iteration [LLM] Think: | cleaned the mug. Task completed!
limit is reached. Consistent with Ahn et al. (2022), ‘@ '
we provide the LLM with in-context demonstra- T TTTTTToTmmmmmmees
tions of low-level “atomic” skills specific to the

environment (listed in Table 5 of Appendix A),

You are carrying: a mug 1
[LLM] > go to sinkbasin 1

You reached loc 13, you see ...
[LLM] > clean mug 1 with sinkbasin 1
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ADaPT: As-Needed Decomposition and Planning with Language
Models

. [ Gold Environment Reward
3. Verifier Self-generated Success Heuristic

Self-generated Success Heuristic. In order to 7
%
.

decompose based on the abilities of the executor,
we need to determine whether the executor is capa-

Success Rate
H
o

ble of finishing the given (sub-)task independently 20
or if further decomposition is required. To this //
. 0

end, we employ the executor LLM to determine Alfworld WebShop TextCraft
the completion of the (sub-)task without relying _ _

7 s Figure 12: Comparison of LLM-generated success
on the environment for Obtalmng gOId rewards for heuristic with gold environment rewards to compute
(sub-)tasks. We include a simple instruction in the success rates for all datasets.

executor prompt to output “task completed” if it de-
termines it has succeeded, otherwise output “task
failed” in case it cannot proceed. Refer to example
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ADaPT: As-Needed Decomposition and Planning with Language
Models

Algorithm 1 Algorithm for ADAPT
1: function ADAPT(Task T, Current depth k)

2 // ADAP ]
4. Overall programme 5
4:
5:
Task: F'Llﬂ a clean mug on desk 6:
R T TTI E T 0 Ry Ve 2 RN e e e 7:
" o) Executox ((Cleanthe mug ) : e 8
1 ' i mug on desk \ .
! ! Planner (Task) ‘ ' ! 9:
: [LxM] Think: Input assumption: | am carrying a : Step 1 —> ADaPT (Stepl, k+1) ™ : :
1| mug. Now | need to verify this. ok 4
e OK 3 Step 2 —>ADaPT (Step2, k+1) - 4| ! [ # Think : e
'| (r.xa07> inventory ' e - s oyt [mug i 10: ’P logzc “— plannerL,_M(T)
| You are carrying: a mug 1 ' P SJe >ADaPT (Step3, k+1)--i| 1 | need fo perfom : 11: // Get the outputs for individual sub tasks
¢| zxm1> go to sinkbasin 1 : 1[Sep LEind and ko ang Ak, - |« 12: O = {ADAPT (Tuup, k+1)|Tsus € P}
' You reached loc 13, you see .. p : # Think: Now | found a mug, I will clean it : 13: ¥ Combine the its /'I/ L
| (111> clean mug 1 with sinkbasin 1 ! e 1 [[Sfep2: Clean the mug with sinkbasin AHD ] : OHIZE Hie QUputs CRIBESUD 1ASKS
: You clean mug 1 | controller N guc ! | i low  cioaneg the imiig, Uil pdt | | 14: completed « logic(O)
\ | [LIM] Think: | cleaned the mug. Task completed! || ' ; ' S,te c 3";‘ ‘“IQ' on the aes~d 5 ' 15: return completed
\\ /’l \ return ) 1\ ep ut clean mug on desl ,l

ADaPT (Task, k)

Figure 2: Block diagram of the ADAPT pipeline with an example from ALFWorld. Left: Use of LLM as an
executor to interact iteratively with the environment along with an example execution trajectory. Middle: Overall
recursive algorithm (depth & < d;,ax) that embeds the executor and planner, refer to Algorithm 1 for details. Right:
Outline of using LLM as a planner to generate sub-tasks (steps) and logical operators combining them.
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ADaPT: As-Needed Decomposition and Planning with Language

Models

Example:

ADaPT (Adaptive Decomposition, Dynamic Depth)

Room: You are in the middle of a room. Looking quickly around you, you
see a cabinet 21, a cabinet 20, a cabinet 19, a cabinet 18, a cabinet 17,
a cabinet 16, a cabinet 15, a cabinet 14, a cabinet 13, a cabinet 12, a
cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a cabinet
6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 2, a countertop 1, a diningtable 1, a
drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a sinkbasin 1, a stoveburner 4, a

, desk 1, and a toaster 1.

Your task is to: Put a clean mug on desk.

Execute: Put a clean mug on desk x
> Go to countertop 1

You reached loc 1, ...
> Go to countertop 2

You reached loc 2, ...

\> Think: Mug not found, task failed!

Slep 113 Fmd and take the mug AND
# Think: N

Step 2: Clean the mug uslng sinkbasin axp
# Think: N a

Step 3: Put clean mug on desk

found it

Execute: Find and take the mug x

> Think: Task failed!

Plan: Find and take the mug
k: To do this ta
S(ep 1: Find and (ake mug from countertop or
If I do not find the mug,

Sle 2: Find and (ake mug from cabinet or

If 1 do not find the mug,

Step 3: Find and take mug from drawer

"Execuu: Find and take mug from countertop x

> Think: Task failed!

(Execute: Find and take mug from cabinet

> Think: Task completed!

(Previously executed:
> take mug 1 from cabinet 7
You picked up mug 1 |

Execute: Clean the mug using sinkbasin
> Think: Task completed!
Execute: Find and take the mug from counlenop

> Think: Task completed!
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ADaPT: As-Needed Decomposition and Planning with Language
Models

Results:

Method WebShop TextCraft
Method (dmax = 3) Pick Clean Heat Cool Look Pick2| All ¢ ebShop TextCr
ReAct 32.0 19.0
ReAct 334 €17 435 933 856 WA 38 o on oo o g
Plan-and-Execute 292 613 47.8 381 6L1 118 (433 FRERAE L o0 0
Try Again with ReAct 500 51.6 60.8 47.6 611 59 |47.38 : et :
> Reflexion 35.0 32.0
Reflexion 70.8 61.3 61.0 66.7 61.1 59 |57.5 LATS (Zhou etal., 2023)  38.0' -
ADAPT (Ours) 8.5 806 608 762 611 529|716 TSN o 20

Table 1: ADAPT yields the highest the overall success rates (%)
compared to baselines from prior work (discussed in Sec. 4.2) on
ALFWorld (test split). Best (highest) success rates are highlighted
in bold and second-highest rates are underlined.

Table 2: ADAPT yields the highest success
rate on WebShop and TextCraft (test split) with
dmax = 3 and 4 respectively. TPerformance
reported by Zhou et al. (2023)
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ADaPT: As-Needed Decomposition and Planning with Language
Models

Ablations:
ALFWorld -#- WebShop —§- TextCraft
o 60
©
4 T e - -
0 40 A
[0
o
9]
- -
) é
20 ©
.
1 2 3

Value of dpmax in ADaPT

Figure 4: Success rate of ADAPT increases with the
maximum depth d,,.x for all datasets (dev splits).
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ADaPT: As-Needed Decomposition and Planning with Language

Models

Cost:

mmm ReAct mmm Try Again . ADaPT
mmm Plan-&-Exec Reflexion

AlfWorld WebShop TextCraft

w
o

Avg. #LLM Calls
o S

Figure 7: Average number of LLM calls for each ap-
proach including ADAPT and baselines discussed in
Sec. 4.2 with GPT-3.5 LLM across datasets.
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ADaPT: As-Needed Decomposition and Planning with Language
Models

Conclusion:
1. Effective method of scaling test time computation to improve score (and works with agents)
2. Seems to be cleverer than ToT (as only decomposes when needed)

3. Would be interesting to have proper cost analysis of computation
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Takeaways & Other ideas
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Takeaways & Other Ideas

1. Test time computation can be very effective

2. Different ways to influence test-time computation (better base “reasoning”; better exploration;
better “verification & reflection”; better overall architecture) (collaboration anyone?)

3. It would be interesting to have a good analysis of cost vs. performance across methods
(collaboration anyone?)

4. Anything else?
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