IMPERIAL

NLP Reading Group

June 3rd 2025

Group Relative Policy Optimisation (GRPO)

IMPERIAL

Group Relative Policy Optimisation (GRPO)
&deepseek

DeepSeekMath: Pushing the Limits of Mathematical
Reasoning in Open Language Models

Zhihong Shao'?*', Peiyi Wang!3*!, Qihao Zhu'?*!, Runxin Xu!, Junxiao Song!
Xiao Bi!, Haowei Zhang!, Mingchuan Zhang!, Y.K. Li!, Y. Wu!, Daya Guo'*

'DeepSeek-Al, 2Tsinghua University, *Peking University

{zhihongshao,wangpeiyi,zhugh,guoday}@deepseek.com
https://github.com/deepseek-ai/DeepSeek-Math

27th April 2024
IMPERIAL

GRPO or How to get a really good reasoning model?

Main Contributions of GRPO paper:

1. DeepSeekMath-Corpus (120B tokens) for continued pre-training
2. GRPO algorithm & analysis (144K training samples)
3. SOTA 7B model on math reasoning (given its size).

4. (Special mention) SFT Instruction tuning dataset collection; 776K examples.

IMPERIAL

GRPO: Some motivation

MATH Top@1 Accuracy
w N Ul
o o o

N
o

10

Gemini-Ultra

Qwen-728'
Llemma-348 %
Mistral-7B,,/‘

Qwen-14B _-®
WizardMath-70B o~

LLaMA1-65B __-=""

[o

2023-04 2023-07 2023-10 2024-01

Date

Figure 1 | Top1 accuracy of open-source models on the competition-level MATH benchmark
(Hendrycks et al., 2021) without the use of external toolkits and voting techniques.

IMPERIAL

Part 1: Dataset Curation

IMPERIAL

GRPO: Part 1: Pre-training Corpus

Pre-training Corpus:

- N

Filtered from Common Crawl 4.0 (a large web crawl dataset)
Classifier is training on fastText !!! (This is from 2016, based on static word-vectors)
Iteratively filtering dataset and extending the “seed” dataset to allow for larger math seed corpus.

In total 120B tokens (e.g. Modern LLMs train on 3T - 15T, or more) so this is 5% of the total
pre-training corpus (i.e. quite significant).

A total of 3 rounds of filtering (in last round they had captured already 98% compared to next round).

IMPERIAL

GRPO: Part 1: Pretraining Corpus

1. Train a FastText Model 2. Recall Math-Related Webpages
From Common Crawl

Math Seed

Deduplicated Common Crawl Math Corpus

40B HTML pages
4. Annotate Math-Related A .
URL Path From Labelers >‘—G Discover Math-Related Domains

Figure 2 | An iterative pipeline that collects mathematical web pages from Common Crawl.

IMPERIAL

Part 2. GRPO Algorithm

IMPERIAL

GRPO: Part 2: GRPO Algorithm

Reference

Model

Reward
Model

Value
Model

PPO

Trained
Models

-
Lo2 Jof Rowart [S o L[42]

Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
estimating the baseline from group scores, significantly reducing training resources.

Frozen

Reference
Model

IMPERIAL

GRPO: Part 2: GRPO Algorithm

Starting point Policy Optimisation Methods & Proximal Policy Optimisation Algorithm (2017)

1. In RL one wants to optimise E[R]; one either does this via Q-learning (or value-based RL); or policy
optimisation (policy-based RL).

2. Classical unbiased estimate for the gradient of VE[R] ~ V 0 log 1r(a_t|s_t; 8)R_t (from
REINFORCE)

3. Abetter unbiased estimate is: VE[R] ~ V 0 log mr(a_t|s_t; 8) (R_t — b_t(s_t)); where b_tis a
baseline, often the Value function. (R_t = b_t(s_t)) = A_t is called the Advantage.

IMPERIAL

GRPO: Part 2: GRPO Algorithm

Proximal Policy Optimisation (PPO) is crucial in modern LLMs (via RLHF)

1. The key innovation of GRPO is to replace the Value function from PPO with an approximation from

averages (this massively reduces memory constraints; as Value function is often as big as the
Policy; i.e 2x LLMs in memory).

2. However, knowing that this comes from the classical Policy Gradient Estimation theory, suddenly
GRPO makes perfect sense!

IMPERIAL

GRPO: Part 2: GRPO Algorithm

The GRPO algorithm:

1. VE[R]~ V60 logm(a_t|s_t; 8) (A_t) *
2. Where,A t=R t-b (s t)
3. Where b_t = Average of the current sample from the policy.

*=technically GRPO also has a KL divergence term to not allow the policy to deviate too much from the
reference policy (which is the original LLM usually).

Jorpo(0) = E[q ~ P(Q), {0i}5 | ~ mg,,(0lg)]

IG(O',th,O" t) A . J7--9(0',lf|qro', t) A
I4I<Ai,ttdlp 171<,1_€’1+€ Ai,t —pDk1 [7[0||Iref] s
Q14 (Oi,t |q1 Oi,<t) TG4 (Oi,th/ Oi,<t)

= ol i IMPERIAL

GRPO: Part 2: GRPO Algorithm

Reference

Model

Reward
Model

Value
Model

PPO

Trained
Models

-
Lo2 Jof Rowart [S o L[42]

Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
estimating the baseline from group scores, significantly reducing training resources.

Frozen

Reference
Model

IMPERIAL

Part 3: Experiments & Results

IMPERIAL

GRPO: Part 3: Experiments & Results

RL Setup

1. Outcome supervision
2. Process supervision (how can they evaluate intermediate steps?)

3. lterative RL (re-training reward model)

IMPERIAL

GRPO: Part 3: Experiments & Results

Process Supervision

1. Math-Shepard Paper

(Problem: Let p(x) be a monic polynomial of degree 4. Three] [

| of the roots of p(x)are 1, 2, and 3. Find p(0) + p(4). Golden ansyex: 24

Solution: § = §1,52,83,", Sk H Answer: 20 X } (a) Outcome Annotation: yg = 0

Problem: S21 H S31 H H Sk, H Answer: 24 \/}

S1: Since three of the

roots of p(x) are 1, 2, and S22 H S22 H H Sk, 2 H Answer: 24/ }

3, we can write : p(x) =

(x-1Dx-2)(x-3)(x-r). 523 H 523 H H SK33 H Answer: ZOX }

2
(b): Process Annotation: y3r= 3 yif=1

\ AN

[s;: the /th step of the solution §. s;;: the #th step of the j-th finalized solution.

IMPERIAL

GRPO: Part 3: Experiments & Results

Hyper-params

1. 64 outputs per question, 1024 Max-tokens, 1024 batch-size (confused what batch-size means.
Maybe 16 questions per update?)

2. 144K Questions from SFT dataset.

IMPERIAL

GRPO: Part 3: Experiments & Results

Evaluation datasets:

1. Loads of datasets:
a. Math, Math with Tools, Formal Maths, General reasoning benchmarking (e.g. MMLU)

2. GSM8K & MATHS500

IMPERIAL

GRPO: Part 3: Experiments & Results

Model

Siz

o English Benchmarks Chinese Benchmarks

GSM8K MATH MGSM-zh CMATH

Chain-of-Thought Reasoning

Closed-Source Model

Gemini Ultra - 94.4% 53.2% - -
GPT-4 - 92.0% 52.9% - 86.0%
Inflection-2 - 81.4% 34.8% - -
GPT-3.5 - 80.8% 34.1% - 73.8%
Gemini Pro - 86.5% 32.6% - -
Grok-1 - 62.9% 23.9% - -
Baichuan-3 - 88.2% 49.2% - -
GLM-4 - 87.6% 47.9% - -
Open-Source Model
Internl. M2-Math 20B 82.6% 37.7% - -
Qwen 72B 78.9% 35.2% - -
Math-Shepherd-Mistral 7B 84.1% 33.0% - -
WizardMath-v1.1 7B 83.2% 33.0% = -
DeepSeek-LLM-Chat 67B 84.1% 32.6% 74.0% 80.3%
MetaMath 70B 82.3% 26.6% 66.4% 70.9%
SeaLLM-v2 7B 782% 27.5% 64.8% -
ChatGLM3 6B 72.3% 25.7% - -
WizardMath-v1.0 70B 81.6% 22.7% 64.8% 65.4%
DeepSeekMath-Instruct 7B 82.9% 46.8% 73.2% 84.6%
DeepSeekMath-RL 7B 88.2% 51.7% 79.6% 88.8%

IMPERIAL

GRPO: Part 3: Experiments & Results

Traini . Training Tokens w/o Tool Use w/ Tool Use
raining Setting
General Code Math GSM8K MATH CMATH GSM8K+Python MATH+Python
No Continual Training - - - 29% 3.0% 12.3% 2.7% 2.3%
Two-Stage Training
Stage 1: General Training 400B - - 29% 32% 14.8% 3.3% 2.3%
Stage 2: Math Training - - 150B 19.1% 14.4% 37.2% 14.3% 6.7%
Stage 1: Code Training - 400B - 59% 3.6% 19.9% 12.4% 10.0%
Stage 2: Math Training = = 150B 21.9% 15.3% 39.7% 17.4% 9.4%
One-Stage Training
Math Training - - 150B 20.5% 13.1% 37.6% 11.4% 6.5%
Code & Math Mixed Training — 400B 150B 17.6% 12.1% 36.3% 19.7% 13.5%

Table 6 | Investigation of how code affects mathematical reasoning under different training
settings. We experiment with DeepSeek-LLM 1.3B, and evaluate its mathematical reasoning
performance without and with tool use via few-shot chain-of-thought prompting and few-shot

program-of-thought prompting, respectively.

IMPERIAL

Part 4: Insights

IMPERIAL

GRPO: Part 4: Insights

Insights
1. RL enhances Maj@K performance but not Pass@K

2. =>it seems that the improvement is attributed to boosting the correct response from TopK
rather than the enhancement of fundamental capabilities

=> The authors present that this is the biggest area of interest for future work. (l.e. How can one create
more generalisation using RL).

IMPERIAL

GRPO: Part 4: Insights

Reward Function Reward function is the source of the training signal. In RL, the reward
function is usually the neural reward model. We think there exist three important directions for
reward models: 1) How to enhance the generalization ability of the reward model. The reward
model must be effectively generalized to handle out-of-distribution questions and advanced
decoding outputs; otherwise, reinforcement learning may merely stabilize the distribution of
LLMs rather than improve their fundamental capabilities; 2) How to reflect the uncertainty
of reward model. The uncertainty could potentially act as a linking bridge between the weak
reward model and the weak-to-strong learning algorithms; 3) How to efficiently build high-
quality process reward models that can provide fine-grained training signals for the reasoning
process (Lightman et al., 2023; Wang et al., 2023b).

IMPERIAL

DeepSeek-R1

IMPERIAL

DeepSeek-R1
&deepseek

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-Al

research@deepseek.com

22nd January 2025
IMPERIAL

DeepSeek-R1

Main Contributions of DeepSeek-R1 paper:

1. Large-scale RL improves models massively.
2. RL alone can get you amazing results.
3. GRPO can be used without training a reward-model!

4. Distillation into smaller models yields powerful smaller models.

IMPERIAL

DeepSeek-R1

Accuracy / Percentile (%)

100

60

40

20

@4 DeepSeek-R1 9 OpenAl-01-1217 “" DeepSeek-R1-32B OpenAl-ol-mini
96.396.6 97.396.4
y 93.4 f 943
¢ 90.6 90.0 90.2 9-391‘8
5 % a7a 885
85.2
: 75.7 #
72.6 / . /
/ 3.5 7 62.1 .
o 58.7 60.0 59,1 /
39.2 1 /
AIME 2024 Codeforces GPQA Diamond MATH-500 MMLU
(Pass@1) (Percentile) (Pass@1) (Pass@1) (Pass@1)

Figure 1 | Benchmark performance of DeepSeek-R1.

DeepSeek-V3

SWE-bench Verified

(Resolved)

IMPERIAL

DeepSeek-R1

DeepSeek-R1-Zero AIME accuracy during training

0.9

0.8 1

0.7 4

Accuracy
© o
w (<))
L s

o
S
s

0.3

0.2

—8— rl-zero-pass@1

—8— rl-zero-cons@16
=== 01-0912-pass@1
—==- 01-0912-cons@64

0 2000 4000 6000 8000
Steps

Average length per response

DeepSeek-R1-Zero average length per response during training

12000 -

10000 -

8000 -

6000 -

4000 A

2000 -

2000

4000 6000 8000
Steps

IMPERIAL

Part 1: DeepSeek-R1 Zero -> DeepSeek-R1

IMPERIAL

DeepSeek-R1 Zero -> DeepSeek-R1

DeepSeek-R1 Zero has impressive performance, however, lacks human readability. E.g. Multiple
languages mixed together.

Method of improving upon DeepSeek-R1 Zero:
1. Create high-quality “cold-start” data with CoT for SFT.
2. RL after that.

3. 2nd SFT Phase for improved readability: (800K samples -> train Base model on this data).

a. Reasoning Data. Sample via “rejection sampling” high quality CoT from RL model (incl. evaluation
using Base Model; or readability params; like code blocks or multi-linguality).

b. General Purpose data: Use DeepSeek-V3 (base model) SFT data for general purpose tasks.
4. RL tune (stage 3) for both Reasoning (R1-style) and general tasks (V3-style). [question do they discard

Stage 1 & 27] IMPERIAL

Part 2: Interesting Insights

IMPERIAL

DeepSeek-R1: Interesting Insights

Distillation vs. RL

AIME 2024 MATH-500 GPQA Diamond LiveCodeBench

Mode] pass@1l cons@64 pass@1 pass@1 pass@1
QwQ-32B-Preview 50.0 60.0 90.6 54.5 419
DeepSeek-R1-Zero-Qwen-32B 47.0 60.0 91.6 55.0 40.2
DeepSeek-R1-Distill-Qwen-32B 72.6 83.3 94.3 62.1 57.2

Table 6 | Comparison of distilled and RL Models on Reasoning-Related Benchmarks.

IMPERIAL

DeepSeek-R1: Interesting Insights

Unsuccessful Attempts:

Process Reward Model (PRM) PRM is a reasonable method to guide the model toward better
approaches for solving reasoning tasks (Lightman et al., 2023; Uesato et al., 2022; Wang et al.,
2023). However, in practice, PRM has three main limitations that may hinder its ultimate suc-
cess. First, it is challenging to explicitly define a fine-grain step in general reasoning. Second,
determining whether the current intermediate step is correct is a challenging task. Automated
annotation using models may not yield satisfactory results, while manual annotation is not con-
ducive to scaling up. Third, once a model-based PRM is introduced, it inevitably leads to reward
hacking (Gao et al., 2022), and retraining the reward model needs additional training resources
and it complicates the whole training pipeline. In conclusion, while PRM demonstrates a good
ability to rerank the top-N responses generated by the model or assist in guided search (Snell
et al., 2024), its advantages are limited compared to the additional computational overhead it
introduces during the large-scale reinforcement learning process in our experiments.

Monte Carlo Tree Search (MCTS) Inspired by AlphaGo (Silver et al., 2017b) and AlphaZero (Sil-
ver et al., 2017a), we explored using Monte Carlo Tree Search (MCTS) to enhance test-time
compute scalability. This approach involves breaking answers into smaller parts to allow the
model to explore the solution space systematically. To facilitate this, we prompt the model to
generate multiple tags that correspond to specific reasoning steps necessary for the search. For
training, we first use collected prompts to find answers via MCTS guided by a pre-trained value
model. Subsequently, we use the resulting question-answer pairs to train both the actor model
and the value model, iteratively refining the process.

However, this approach encounters several challenges when scaling up the training. First,
unlike chess, where the search space is relatively well-defined, token generation presents an

exponentially larger search space. To address this, we set a maximum extension limit for each
node, but this can lead to the model getting stuck in local optima. Second, the value model
directly influences the quality of generation since it guides each step of the search process.
Training a fine-grained value model is inherently difficult, which makes it challenging for the
model to iteratively improve. While AlphaGo’s core success relied on training a value model to
progressively enhance its performance, this principle proves difficult to replicate in our setup
due to the complexities of token generation.

In conclusion, while MCTS can improve performance during inference when paired with a
pre-trained value model, iteratively boosting model performance through self-search remains a
significant challenge.

IMPERIAL

DeepSeek-R1: Interesting Insights (Future Work)

* General Capability: Currently, the capabilities of DeepSeek-R1 fall short of DeepSeek-V3
in tasks such as function calling, multi-turn, complex role-playing, and JSON output.
Moving forward, we plan to explore how long CoT can be leveraged to enhance tasks in
these fields.

* Language Mixing: DeepSeek-R1 is currently optimized for Chinese and English, which
may result in language mixing issues when handling queries in other languages. For
instance, DeepSeek-R1 might use English for reasoning and responses, even if the query is
in a language other than English or Chinese. We aim to address this limitation in future
updates.

* Prompting Engineering: When evaluating DeepSeek-R1, we observe that it is sensitive
to prompts. Few-shot prompting consistently degrades its performance. Therefore, we
recommend users directly describe the problem and specify the output format using a
zero-shot setting for optimal results.

* Software Engineering Tasks: Due to the long evaluation times, which impact the effi-
ciency of the RL process, large-scale RL has not been applied extensively in software
engineering tasks. As a result, DeepSeek-R1 has not demonstrated a huge improvement
over DeepSeek-V3 on software engineering benchmarks. Future versions will address
this by implementing rejection sampling on software engineering data or incorporating
asynchronous evaluations during the RL process to improve efficiency.

IMPERIAL

Conclusion & Takeaways

IMPERIAL

Conclusions & Takeaways

1. Reading old-papers is very relevant (both for understanding & developing new methods, e.g.
PPO) and for building new methods (e.g. fastText).

2. GRPO is quite a successful algorithm. In it’s classical variant it seems to help the model
distribution (i.e. Make TopK better).

3. The R1 paper introduces heuristic rewards & eliminates training PRM (process reward
models), which seems to be very hard.

4. Distillation is more powerful than discovering knowledge by itself.

5. Pre-training data is crucial; data quality is crucial; data is crucial no matter what you do!

6. Questions: What can be elicited from a model directly? Vs. what needs to be distilled? What
does this mean for completely new tasks (do we have a natural bottleneck, i.e. need humans

first)?
IMPERIAL

Conclusions & Takeaways

Generally, this is an exciting avenue of research and still shows a lot of promise and
uncharted territory.

Questions arise like: is the base model capable of these things and is RL bringing it out
of the model? Or is RL doing fundamentally something new? How can one effectively
combine and scale techniques together (V3 vs. R1)? How can one put everything
together? How can one scale it to new problems?

IMPERIAL

References

IMPERIAL

Bibliography

- GRPO: https://arxiv.org/pdf/2402.03300

- DeepSeek-R1: https://arxiv.org/pdf/2501.12948

- PPO: https://arxiv.org/pdf/1707.06347

- MathShepard: https://arxiv.org/pdf/2312.08935

- Trust Region Policy Optimization (TRPO): https://arxiv.org/pdf/1502.05477
(that’s the paper, where the p()/p_old estimate for the policy gradient comes
from.

- Better Reasoning with Alignment: https://arxiv.org/pdf/2309.02144

- Weak to Strong Supervision (OpenAl): https://arxiv.org/pdf/2312.09390

IMPERIAL

https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2501.12948
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/2312.08935
https://arxiv.org/pdf/1502.05477
https://arxiv.org/pdf/2309.02144
https://arxiv.org/pdf/2312.09390

